- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Runge, Keith (2)
-
Abi Ghanem, Maroun (1)
-
Allein, Florian (1)
-
Alqasimi, Jihad (1)
-
Boechler, Nicholas (1)
-
Calderin, Lazaro (1)
-
Chon, Allan (1)
-
Curradi, Richard (1)
-
Deymier, Pierre (1)
-
Deymier, Pierre A (1)
-
Deymier, Pierre A. (1)
-
Frankel, Ian (1)
-
Gorelik, Rachel (1)
-
Hasan, M. Arif (1)
-
Hodges, Todd_M W (1)
-
Lambert-Milak, Gabrielle (1)
-
Lata, Trevor (1)
-
Lata, Trevor D (1)
-
Lata, Trevor D. (1)
-
Levine, Josh A. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a sensing modality using the geometric phase of acoustic waves propagating in an underwater environment. We experimentally investigate the effect of scattering by a small subwavelength perturbation on a flat submerged surface. We represent the state of an acoustic field in the unperturbed and perturbed cases as multidimensional vectors. The change in geometric phase is obtained by calculating the angle between those vectors. This angle represents a rotation of the state vector of the wave due to scattering by the perturbation. We perform statistical analysis to define a signal-to-noise ratio to quantify the sensitivity of the geometric phase measurement and compare it to magnitude based measurements. This geometric phase sensing modality is shown to have higher sensitivity than the magnitude based sensing approach.more » « less
-
Deymier, Pierre A.; Runge, Keith; Hasan, M. Arif; Lata, Trevor D.; Levine, Josh A. (, Quantum Reports)We experimentally navigate the Hilbert space of two logical phi-bits supported by an externally driven nonlinear array of coupled acoustic waveguides by parametrically changing the relative phase of the drivers. We observe sharp phase jumps of approximately 180° in the individual phi-bit states as a result of the phase tuning of the drivers. The occurrence of these sharp phase jumps varies from phi-bit to phi-bit. All phi-bit phases also possess a common background dependency on the drivers’ phase. Within the context of multiple time scale perturbation theory, we develop a simple model of the nonlinear array of externally driven coupled acoustic waveguides to shed light on the possible mechanisms for the experimentally observed behavior of the logical phi-bit phase. Finally, we illustrate the ability to experimentally initialize the state of single- and multiple- phi-bit systems by exploiting the drivers’ phase as a tuning parameter. We also show that the nonlinear correlation between phi-bits enables parallelism in the manipulation of two- and multi-phi-bit superpositions of states.more » « less
-
Palacios, Justin; Calderin, Lazaro; Chon, Allan; Frankel, Ian; Alqasimi, Jihad; Allein, Florian; Gorelik, Rachel; Lata, Trevor; Curradi, Richard; Lambert-Milak, Gabrielle; et al (, The Journal of the Acoustical Society of America)We computationally investigate a method for spatiotemporally modulating a material's elastic properties, leveraging thermal dependence of elastic moduli, with the goal of inducing nonreciprocal propagation of acoustic waves. Acoustic wave propagation in an aluminum thin film subjected to spatiotemporal boundary heating from one side and constant cooling from the other side was simulated via the finite element method. Material property modulation patterns induced by the asymmetric boundary heating are found to be non-homogenous with depth. Despite these inhomogeneities, it will be shown that such thermoelasticity can still be used to achieve nonreciprocal acoustic wave propagation.more » « less
An official website of the United States government
